

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2011

CHEMISTRY - CH2

SECTION A

		Т	otal [10]				
	(b)	$C_5H_{10}O$	[1]				
Q.6	(a)	Alkene / double bond (1) Alcohol / hydroxyl / hydroxy (1)	[2]				
Q.5	Materials that change their properties in response to a change in conditions / environment / surroundings						
Q.4	D		[1]				
Q.3	Ca ₃ (PO ₄) ₂						
Q.2		Metallic (1) Covalent and van der Waals (1) [2					
	(b)	Sodium carbonate	[1]				
Q.1	(a)	Calcium carbonate	[1]				

SECTION B

- Q.7 (a) Compound that contains no double bonds / single bonds only (Accept contains maximum number of hydrogens) [1]
 - [0]
 - (b) (i) $C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$ [2] products (1) balancing (1)
 - (ii)

[1]

(c) Cracking (1)
Heat fraction strongly / heat over a catalyst (1)
Accept equation or description of cracking

[2]

(d) Planar molecule with trigonal arrangement about each atom / bond angles roughly 120° (1)

Four (single) **covalent** C - H bonds and one C = C double bond (1)

 π bond in C = C formed by sideways overlap of p orbital (1) [3]

QWC: Information is organised clearly and coherently, using specialist vocabulary where appropriate. [1]

(e) Electrophilic addition (1)

[2]

- (f) Phosphoric acid [1]
- (g) Moles ethanol = $\frac{230}{46}$ = 5 (1)

Moles glucose = 2.5(1)

Mass glucose = $2.5 \times 180 = 450 \text{ g}$ (1) [3]

Total [16]

Q.8 $C_4H_{10} + CI_2 \longrightarrow C_4H_9CI + HCI$ (1) (a) UV light (1) any of following for 4 max $Cl_2 \longrightarrow 2Cl^{\bullet}$ (1) Free radical substitution / photochlorination (1) $Cl^{\bullet} + C_4H_{10} \longrightarrow {}^{\bullet}C_4H_9 + HCl (1)$ ${}^{\bullet}C_4H_9 + Cl_2 \longrightarrow C_4H_9Cl + Cl^{\bullet}$ (1) e.g. $Cl^{\bullet} + Cl^{\bullet} \longrightarrow Cl_2$ (1) [6] QWC: Selection of form and style of writing appropriate to purpose and to complexity of subject matter. [1] (b) $C_4H_9CI + NaOH \longrightarrow C_4H_9OH + NaCI (1)$ Nucleophilic substitution / hydrolysis [2] (c) Heat with NaOH (1) Add HNO₃ then AgNO₃ (1) White precipitate seen (1) [3] Ozone layer depleted / (leads to) increased incidence of skin cancer (d) Contributes to greenhouse effect / increases global warming [1]

Total [13]

Q.9 C=O absorption at 1650-1750 cm⁻¹ (a) C-O absorption at 1000-1300 cm⁻¹ O-H absorption at 2500-3500 cm⁻¹ 3 correct peaks labelled [2] (2 correct peaks labelled 1 mark) (b) Molecular ion at m/z 60 shows that M_r is 60 (1) Peak at m/z 15 shows CH₃ group / peak at m/z 45 shows COOH group (1) [2] (c) (i) [1] (Accept 1 hydrogen bond) (ii) (Intermolecular bond formed) when hydrogen attached to a highly electronegative atom (oxygen) (1) is bonded to an electronegative atom in another molecule (1) forming very strong dipole – dipole attraction (1) [3] QWC: Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning [1] (d) Acidified and heat / reflux (i) [1] (ii) Colour change from orange to green [1] (e) Propane would be lower as it cannot form hydrogen bonds / only forms van der Waals forces between molecules (1) Butan-1-ol would be higher as it (also has hydrogen bonds but) has more van der Waals forces between molecules (1)

Total [13]

[2]

Q.10	(a)	(i)	$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$	[1]
		(ii)	ElementInitial Oxidation StateFinal Oxidation StateNitrogen-32Hydrogen11Oxygen0-2	
			All three rows correct (2) (1 mark if two rows correct)	
			Nitrogen oxidised as its oxidation state has increased (1)	[3]
		(iii)	NH ₃ has 3 bonding and 1 non bonding pair of electrons (1)	
			BF ₃ has 3 bonding pairs only (1)	
			Electron pairs position themselves as far apart as possible (to minimise repulsion) (1)	[3]
	(b)	(i)	A covalent bond where one of the atoms has donated both electro in the shared pair	ns [1]
			H T charge spread over ion (1)	
			H charge spread over ion (1) correct bonding (1)	
		(iii)	Tetrahedral (1)	[2]
			109½° (1) (accept 109°)	[2]
		(iv)	Water is polar / a polar solvent (1)	
			Anion is attracted to $H^{\delta+}$ / cation is attracted to $O^{\delta-}$ (1)	[2]
			Total	[14]

Q.11 (a) Lilac flame (1) (i) White solid / white fumes / potassium melts (1) [2] 4K + O₂ — → 2K₂O (ii) [1] More reactive (1) (iii) Electrons in rubidium lost more easily / ionisation energy is less / explanation e.g. increased sheilding (1) [2] (Need reason to get first mark but accept more reactive as reactivity increases down group for 1 mark) No. moles = $\frac{0.098}{23}$ = 0.00426 (b) (i) [1] Moles $H_2 = 0.00213$ (1) (ii) Volume $H_2 = 0.00213 \times 24 = 0.0511 \text{ dm}^3$ (1) [2] Moles NaOH = 0.00426 (1) (iii) Concentration NaOH = $\frac{0.00426}{0.200}$ = 0.0213 mol dm⁻³ (1) [2] (c) Do the experiment in a fume cupboard (i) [1] I (ii) 6:6 [1] Ш Electrostatic forces between the oppositely charged ions (1) ionic bonds are / ionic lattice is very strong so large amount of

energy needed (1)

Total [14]

[2]

Section B Total [70]